Abstract

This paper presents a three-class mental task classification for an electroencephalography based brain computer interface. Experiments were conducted with patients with tetraplegia and able bodied controls. In addition, comparisons with different time-windows of data were examined to find the time window with the highest classification accuracy. The three mental tasks used were letter composing, arithmetic and imagery of a Rubik's cube rolling forward; these tasks were associated with three wheelchair commands: left, right and forward, respectively. An eyes closed task was also recorded for the algorithms testing and used as an additional on/off command. The features extraction method was based on the spectrum from a Hilbert-Huang transform and the classification algorithm was based on an artificial neural network with a fuzzy particle swarm optimization with cross-mutated operation. The results show a strong eyes closed detection for both groups with average accuracy at above 90%. The overall result for the combined groups shows an improved average accuracy of 70.6% at 1s, 74.8% at 2s, 77.8% at 3s, 79.6% at 4s and 81.4% at 5s. The accuracy for individual groups were lower for patients with tetraplegia compared to the able-bodied group, however, does improve with increased duration of the time-window.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.