Abstract

The identification of the specific categories of pollutants in the urban water supply system is necessary. Traditional detection methods are based mainly on common water quality indicators. However, inspecting these water quality indicators is made difficult by issues such as long analysis time, insufficient sensitivity, need for reagents, and generation of waste liquid. These problems hinder high-frequency water detection and monitoring. In this study, three-dimensional (3D) fluorescence spectroscopy is adopted as a monitoring method for water quality. An identification method based on two-dimensional (2D) Gabor wavelets and support vector machine (SVM) multi-classification is also proposed. The Delaunay triangulation method for interpolation is used to pre-process 3D fluorescence spectra and thereby eliminate Rayleigh scattering and Raman scattering. A 2D Gabor wavelet function generated by filters of different scales and rotation angles is proposed to extract the features of the spectra. The block statistics method, based on Gabor feature description, is employed to enhance the efficiency in describing spectra features. Then, multiple SVM classifiers are used in pollutant classification and recognition. By comparing the proposed method with principal component analysis, which is a commonly used feature extraction method, this study finds that the application of 2D Gabor wavelets and block statistics can effectively describe the characteristics of 3D fluorescence spectra. Moreover, 2D Gabor wavelets achieve high classification accuracy, especially for substances with closely positioned or overlapping characteristic peaks.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call