Abstract

AbstractSupport Vector Machines (SVMs) have been applied to solve the classification of volatile organic compounds (VOC) data in some recent studies. SVMs provide good generalization performance in detection and classification of VOC data. However, in many applications involving VOC data, it is not unusual for additional data, which may include new classes, to become available over time, which then requires an SVM classifier that is capable of incremental learning that does not suffer from loss of previously acquired knowledge. In our previous work, we have proposed the incremental SVM approach based on Learn + + .MT. In this contribution, the ability of SVMLearn + + .MT to incrementally classify VOC data is evaluated and compared against a similarly constructed Learn + + .MT algorithm that uses radial basis function neural network as base classifiers.KeywordsSupport Vector MachineVolatile Organic CompoundRadial Basis FunctionRadial Basis Function Neural NetworkRadial Basis Function NetworkThese keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.