Abstract
Background: Internet social media platforms have become quite popular, enabling a wide range of online users to stay in touch with their friends and relatives wherever they are at any time. This has led to a significant increase in virtual crime from the inception of these platforms to the present day. Users are harassed online when confidential information about them is stolen, or when another user posts insulting or offensive comments about them. This has posed a significant threat to online social media users, both mentally and psychologically. Methods: This research compares traditional classifiers and ensemble learning in classifying virtual harassment in online social media networks by using both models with four different datasets: seven machine learning algorithms (Nave Bayes NB, Decision Tree DT, K Nearest Neighbor KNN, Logistics Regression LR, Neural Network NN, Quadratic Discriminant Analysis QDA, and Support Vector Machine SVM) and four ensemble learning models (Ada Boosting, Gradient Boosting, Random Forest, and Max Voting). Finally, we compared our results using twelve evaluation metrics, namely: Accuracy, Precision, Recall, F1-measure, Specificity, Matthew’s Correlation Coefficient (MCC), Cohen’s Kappa Coefficient KAPPA, Area Under Curve (AUC), False Discovery Rate (FDR), False Negative Rate (FNR), False Positive Rate (FPR), and Negative Predictive Value (NPV) were used to show the validity of our algorithms. Results: At the end of the experiments, For Dataset 1, Logistics Regression had the highest accuracy of 0.6923 for machine learning algorithms, while Max Voting Ensemble had the highest accuracy of 0.7047. For dataset 2, K-Nearest Neighbor, Support Vector Machine, and Logistics Regression all had the same highest accuracy of 0.8769 in the machine learning algorithm, while Random Forest and Gradient Boosting Ensemble both had the highest accuracy of 0.8779. For dataset 3, the Support Vector Machine had the highest accuracy of 0.9243 for the machine learning algorithms, while the Random Forest ensemble had the highest accuracy of 0.9258. For dataset 4, the Support Vector Machine and Logistics Regression both had 0.8383, while the Max voting ensemble obtained an accuracy of 0.8280. A bar chart was used to represent our results, showing the minimum, maximum, and quartile ranges. Conclusions: Undoubtedly, this technique has assisted in no small measure in comparing the selected machine learning algorithms as well as the ensemble for detecting and exposing various forms of cyber harassment in cyberspace. Finally, the best and weakest algorithms were revealed.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.