Abstract

Fingerprinting techniques, which utilize the unique chemical and physical properties of food samples, have emerged as a promising approach for food authentication and traceability. Recent studies have demonstrated significant advancements in food authentication through the use of fingerprinting methods, such as multivariate statistical analysis techniques applied to trace elements and isotope ratios. However, further research is required to optimize these methods and ensure their validity and reliability in real-world applications. In this study, the inductively coupled plasma mass spectrometry (ICP-MS) analytical method was employed to determine the content of 21 elements in 300 cashew nut (Anacardium occidentale L.) samples from 5 brands. Multivariate statistical methods, such as principal components analysis (PCA), were employed to analyze the data obtained and establish the provenance of the cashew nuts. While cashew nuts are widely marketed in many countries, no universal method has been utilized to differentiate the origin of these nuts. Our study represents the initial step in identifying the geographical origin of commercial cashew nuts marketed in Vietnam. The analysis showed significant differences in the means of 21 of the 40 analyzed elements among the cashew nut samples from the 5 brands, including 7Li, 11B, 24Mg, 27Al, 44Ca, 48Ti, 51V, 52Cr, 55Mn, 57Fe, 60Ni, 63Cu, 66Zn, 93Nb, 98Mo, 111Cd, 115In, 121Sb, 138Ba, 208Pb, and 209Bi. The PCA analysis indicated that the cashew nut samples can be accurately classified according to their original locations. This research serves as a prerequisite for future studies involving the combination of elemental composition analysis with statistical classification methods for the accurate establishment of cashew nut provenance, which involves the identification of key markers for the original discrimination of cashew nuts.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.