Abstract

AbstractA method to identify the turbulent mixing sources within the marine atmospheric boundary layer (MABL) based on the shipborne coherent Doppler lidar measurements is introduced in this paper. Combining with the coherent Doppler lidar signal‐to‐noise ratio, vertical velocity skewness, turbulence kinetic energy dissipation rate, and wind shear intensity, the categories of turbulent mixing sources and the specific turbulent mixing sources could be determined. The method is applied into two voyages of MABL observation during May 2021 in the South China Sea and during April 2022 in the Bohai Sea and Yellow Sea. The turbulent mixing processes are captured and the classification of the turbulence driven sources within the MABL are realized. The temporal‐spatial evolution characteristics of the turbulence mixing process in the MABL are investigated under different weather conditions containing clear‐sky day, cloudy‐sky day, and sea‐fog day. The convective mixing process is recognized in the daytime of the clear‐sky day and the intermittent cloud‐driven turbulence exists below the cloud layer. Additionally, the turbulent mixing is weak which could not act as the main driven source during the sea‐fog day. Furthermore, the dominant turbulence scale analyses of different turbulence sources are conducted based on the cospectra of the vertical velocity and the horizontal speed measurements. The turbulence parameters of different turbulence sources are statistical analyzed and compared in different sea areas. The classification method has the broad application prospects on the study of the air‐sea interaction.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call