Abstract

Urban trees are valuable in, inter alia, ameliorating air pollution and mitigating the effects associated with urban heat islands. The dearth of tree cover maps is a major challenge for urban planners in the management of urban trees. This work adopts remote sensing approaches to provide urban tree cover maps which can strengthen urban landscape management. Whereas traditional pixel-based classification approaches have been commonly used in image classification, they are not well-suited for urban tree mapping due to their failure to fully explore the image’s spatial and spectral characteristics. Object-based classification techniques produce improved accuracies using additional variables. This study depicts the capability of object-based image analysis (OBIA) in mapping common urban trees using very high-resolution (VHR) WorldView-2 (WV-2) imagery. The study tests the utility of WV-2 bands and other feature variables in the object-based mapping of common urban trees and other land cover classes. Furthermore, the study compares the utility of Support Vector Machine (SVM) and Random Forest (RF) in the object-based mapping of common urban trees and other land cover classes. The results show that the Normalized Difference Vegetation Index (NDVI), NIR 1 and NIR 2 bands were important in the classification of common urban trees and other land cover classes. The RF classifier performed better than SVM, with an overall accuracy of 91.9% as compared to 87.3% for SVM. The results of this study offer insight to urban authorities with knowledge on the segmentation parameters, classification methods and feature variables for mapping urban trees, valuable in urban tree management.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.