Abstract
ABSTRACT Automatization of tree species identification in the field is crucial in improving forest-based bioeconomy, supporting forest management, and facilitating in situ data collection for remote sensing applications. However, tree species recognition has never been addressed with hyperspectral reflectance images of stem bark before. We investigated how stem bark texture differs between tree species using a hyperspectral camera set-up and gray level co-occurrence matrices and assessed the potential of using reflectance spectra and texture features of stem bark to identify tree species. The analyses were based on 200 hyperspectral reflectance data cubes (415–925 nm) representing ten tree species. There were subtle interspecific differences in bark texture. Using average spectral features in linear discriminant analysis classifier resulted in classification accuracy of 92–96.5%. Using spectral and texture features together resulted in accuracy of 93–97.5%. With a convolutional neural network, we obtained an accuracy of 94%. Our study showed that the spectral features of stem bark were robust for classifying tree species, but importantly, bark texture is beneficial when combined with spectral data. Our results suggest that in situ imaging spectroscopy is a promising sensor technology for developing accurate tree species identification applications to support remote sensing.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.