Abstract

Alzheimer's disease is the neuro disorder which characterized by means of Amyloid– β (A β) in brain. However, accurate detection of this disease is a challenging task since the pathological issues of brain are complex in identification. In this paper, the changes associated with the retinal imaging for Alzheimer's disease are classified into two classes such as wild-type (WT) and transgenic mice model (TMM). For testing, optical coherence tomography (OCT) images are used to classify into two groups. The classification is implemented by support vector machines with the optimum kernel selection using a genetic algorithm. Among several kernel functions of SVM, the radial basis kernel function provides the better classification result. In order to deal with an effective classification using SVM, texture features of retinal images are extracted and selected. The overall accuracy reached 92% and 91% of precision for the classification of transgenic mice.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call