Abstract

Nutritional status is the study of food and is related to health. Nutritional status is a benchmark to assess the health development of toddler. The nutritional status of toddler is assessed according to three index, such as body weight to age (BW / A), body height to age (BH / A), body weight to body height (BW / BH). The issue of nutrition is still a major factor in the growth and development of toddler in Indonesia. Public Health Center (Puskesmas) and Integrated Healthcare Center (Posyandu) as public health services work together to control the growth and development of toddler in Indonesia. To help control the growth and development of toddler, we proposed a research to classify the nutritional status of toddler based on anthropometric index. The nutritional status of toddler dataset was formed into a classification model using SVM Hyperparameter Tuning. SVM is a machine learning which the classification model used a hypothesis space in the form of linear functions in a high dimensional feature space. Adjustment of the hyperparameter was involved to reach a model that can optimally solve machine learning problems. We implemented feature selection using Fisher's Discriminant Ratio as a preprocessing stage, which the most important features were body weight (BB) and height (BH). The experimental results showed the classification model using SVM on training and testing data with a ratio of 70:30 reached accuracy of 84%, while SVM Hyperparameter Tuning with parameter of Cost = 100 parameters, Gamma = 0.01, Kernel = RBF reached accuracy of 97%. They represented a significant accuracy difference of 13%.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.