Abstract
Tissue culture techniques are finding increasingly widespread applications for cloning of many plants. Protocols for mass propagation of many species have been developed, but in spite of its advantages, large-scale commercial plant propagation by tissue cultures is largely limited to ornamental plants. This is due mainly to the intensive skilled labour required for subculturing the propagules and in transferring individual shoots or plantlets into and out of culture containers. In order to cut down the production costs, a certain degree of automation is essential. A cost effective approach for automation is proposed, whereby tissue culture plantlets are chopped into approximately uniformly sized segments, on a conveying production line while using colour computer vision for identifying and locating the number and positions of propagation organs, in images of the plantlet segments. Plantlet segments without propagation organs are rejected, while properly cut segments with viable buds or shoots are automatically selected for subculturing. In this paper, some initial results of this approach are reported, in which stationary images of manually pre-cut potato plantlet segments were analysed and classified. Using colour machine vision and a Neural Network-based classifier, a basis was laid for a practical system, which may be used for automatic classification of tissue culture segments of potato plantlets. Instead of the conventional use of black and white cameras and geometric features, colour features only are used together with colour frame manipulation capabilities, which are now available in most commercial imaging boards. This facilitates accurate, high-speed classification of plantlet images.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.