Abstract

We classify the sign of the critical Casimir force between two finite objects separated by a large distance in the two dimensional systems that can be described by conformal field theory (CFT). In particular, we show that as far as the smallest scaling dimension present in the spectrum of the system is smaller than one, the sign of the force is independent of the shape of the objects and can be determined by the elements of the modular $S$-matrix of the CFT. The provided formula for the sign of the force indicates that the force is always attractive for equal boundary conditions independent of the shape of the objects. However, different boundary conditions can lead to attractive or repulsive forces. Using the derived formula, we prove the known results regarding the Ising model and the free bosons. As new examples, we give detailed results regarding the Q=3-states Potts model and the compactified bosons. In particular, for the latter model we show that Dirichlet boundary condition does not always lead to an attractive force.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call