Abstract
ABSTRACT Qilou (arcade building) is a particular type of Chinese historical architecture combined with western and eastern building elements, which plays a significant role in the history of modern Chinese architecture. However, the recognition and classification of the qilou mainly rely on manual inspection, suppressing the cultural dissemination and protection of qilou relics. In this paper, we present a new framework that adopts multiple image processing algorithms and a deep learning network to automate qilou classification. First, image dataset of the qilou is enhanced based on the Contrast Limited Adaptive Histogram Equalization (CLAHE) algorithm. Then, an improved Faster R-CNN with ResNet50 (Faster R-CNN-R) is deployed for qilou image recognition. A total of 760 images captured in Guangzhou were used for training, validation, and accuracy check of the proposed framework and several contrastive networks under the same conditions. Compared to other networks, the proposed framework works better than Faster R-CNN with VGG16 (Faster R-CNN-V) and FCOS. The accuracy of the proposed framework embedded with the Faster R-CNN-R, Faster R-CNN-V, and FCOS are 80.12%, 65.17%, and 66.35%, respectively. Based on digital images captured under different lighting conditions, the proposed framework can be used to classify nine different types of qilous, with high robustness.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
More From: Journal of Asian Architecture and Building Engineering
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.