Abstract

Crick's wobble theory states that some specific pairs between the bases at the first position of the anticodon (position 34) and the third position of the codon (position III) are allowed and the others are disallowed during the correct codon recognition. However, later researches have shown that the pairing rule, or the wobble rule, is different from the supposed one. Despite the continuing efforts including computer-aided model building studies and analyses of three-dimensional structures in the crystals of the ribosomes, the structural backgrounds of the wobble rule are still unclear. Here, I classify the possible pairs into 6 classes according to the increases accompanying the formation of the pairs in the potential productivity of the decoding complex on the basis of a simple model that was originally proposed previously and is refined here. In the model, the conformation with the base at position 34 displaced toward the minor groove side from the position for the Watson–Crick pairs is supposed to be equivalent to the conformation with the Watson–Crick pairs. It is also reasoned and supposed that some weak pairs may sometimes be allowed depending on the structural context. It is demonstrated that most of the experimental results reported so far are consistent with the model. I discuss on which experimental facts can be reasoned with the model and which need further explanations. I expect that the model will be a good basis for further understanding of the wobble rule and its structural backgrounds.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call