Abstract
Road condition evaluation is a critical part of gravel road maintenance. One of the assessed parameters is the amount of loose gravel, as this determines the driving quality and safety. Loose gravel can cause tires to slip and the driver to lose control. An expert assesses the road conditions subjectively by looking at images and notes. This method is labor-intensive and subject to error in judgment; therefore, its reliability is questionable. Road management agencies look for automated and objective measurement systems. In this study, acoustic data on gravel hitting the bottom of a car was used. The connection between the acoustics and the condition of loose gravel on gravel roads was assessed. Traditional supervised learning algorithms and convolution neural network (CNN) were applied, and their performances are compared for the classification of loose gravel acoustics. The advantage of using a pre-trained CNN is that it selects relevant features for training. In addition, pre-trained networks offer the advantage of not requiring days of training or colossal training data. In supervised learning, the accuracy of the ensemble bagged tree algorithm for gravel and non-gravel sound classification was found to be 97.5%, whereas, in the case of deep learning, pre-trained network GoogLeNet accuracy was 97.91% for classifying spectrogram images of the gravel sounds.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.