Abstract
Gestures of the human hand can be identified through processing of surface electromyography (sEMG) signals. The human hand can perform many gestures via manipulation of the fingers. With correct classification of finger gestures, the mobility of a prosthetic hand can be increased and provide greater functionally. In this study, reliable classification was obtained for sEMG finger data acquired from a Myo armband placed on the lower forearm. In order to improve classification, gyroscopic signals, not previously used in other studies, were investigated in the sEMG finger data. Data was acquired from ten normal subjects using the Myo armband to identify 6 finger gestures: thumb, index finger, middle finger, little finger, ring finger and rest. Participants repeated each gesture thirty times. sEMG signals were preprocessed to extract features. 17 features were used in the feature matrix. By using the sequential forward feature selection method, the highest performance feature set was determined. Support Vector Machine, K-Nearest Neighbor and multilayer artificial neural network were used as classification algorithm. The classification was made using the Classification Learner Application and Neural Network Pattern Recognition Tool in Matlab®. The best performance with the features extracted only from sEMG data was 94.40% using the Artificial Neural Networks (ANN) method. The best performance with the features extracted from both sEMG and gyroscopic data was 96.30% (p-value < 0.05)with the ANN method. It is seen that gyroscopic signals can increase classification performance.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.