Abstract
We classify superpotentials for the Hamiltonian system corresponding to the cohomogeneity one gradient Ricci soliton equations. Aside from recovering known examples of superpotentials for steady solitons, we find a new superpotential on a specific case of the Bérard Bergery–Calabi ansatz. The latter is used to obtain an explicit formula for a steady complete soliton with an equidistant family of hypersurfaces given by circle bundles over S2×S2. There are no superpotentials in the non-steady case in dimensions greater than 2, even if polynomial coefficients are allowed. We also briefly discuss generalised first integrals and the limitations of some known methods of finding them.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.