Abstract

The identification of steels is a crucial step in the process of recycling and reusing steel waste. Laser-induced breakdown spectroscopy (LIBS) coupled with machine learning is a convenient method to classify the types of materials. LIBS can generate characteristic spectra of various samples as input variable for steel classification in real time. However, the performance of classification model is limited to the complex input due to similar chemical composition in samples and nonlinearity problems between spectral intensities and elemental concentrations. In this study, we developed a method of LIBS coupled with deep belief network (DBN), which is suitable to deal with a nonlinear problem, to classify 13 brands of special steels. The performance of the training and validation sets were used as the standard to optimize the structure of DBN. For different input, such as the intensities of full-spectra signals and characteristic spectra lines, the accuracies of the optimized DBN model in the training, validation, and test set are all over 98%. Moreover, compared with the self-organizing maps, linear discriminant analysis (LDA), k-nearest neighbor (KNN) and back-propagation artificial neural networks (BPANN), the result of the test set showed that the optimized DBN model performed second best (98.46%) in all methods using characteristic spectra lines as input. The test accuracy of the DBN model could reach 100% and the maximum accuracy of other methods ranged from 62.31% to 96.16% using full-spectra signals as input. This study demonstrates that DBN can extract representative feature information from high-dimensional input, and that LIBS coupled with DBN has great potential for steel classification.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call