Abstract
We use 343,747 sources from LAMOST DR5 to do star/galaxy/QSO classification with machine learning approaches. Specifically, the 312,767 spectral labeled stars (G, K, M, F, A) are used to do star classification. The photometry of u, g, r, i, z, J, and H are used as machine learning features. For star/galaxy/QSO classification, the k nearest neighbor algorithm (KNN), decision tree (DT), random forest (RF) and support vector machine (SVM) perform well. For star classification, the accuracy of RF and SVM classification are higher than the accuracy of KNN and DT. The area under receiver operating characteristic curves of the four models are approaching to 1. The accuracy, precision, recall, f_score, Matthews correlation coefficient are always greater than 0.5. The four models perform all right in predicting the nature of sources and the star label.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.