Abstract

In this paper we study the spectral geometry of a $4$-dimensional Lie group. The main focus of this paper is to study the $2$-Stein and $2$-Osserman structures on a $4$-dimensional Riemannian Lie group. In this paper, we study the spectrum and trace of Jacobi operator and also we study the characteristic polynomial of generalized Jacobi operator on the non-abelian $4$-dimensional Lie group $G$, whenever $G$ is equipped with an orthonormal left invariant Riemannian metric $g$. The Lie algebra structures in dimension four have key role in this paper. It is known that in the classification of $4$-dimensional non-abelian Lie algebras there are nineteen classes of Lie algebras up to isomorphism [12]. We consider these classes and study all of them. Finally, we study the space form problem and spectral properties of Szabo operator on $G$.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.