Abstract
Recently, new families of quaternary linear Reed–Muller codes have been introduced. They satisfy that, after the Gray map, the corresponding <formula formulatype="inline" xmlns:mml="http://www.w3.org/1998/Math/MathML" xmlns:xlink="http://www.w3.org/1999/xlink"><tex Notation="TeX">${\BBZ}_{4}$</tex></formula> -linear codes have the same parameters and properties as the codes of the binary linear Reed–Muller family. A structural invariant, the dimension of the kernel, for binary codes is used to classify completely these <formula formulatype="inline" xmlns:mml="http://www.w3.org/1998/Math/MathML" xmlns:xlink="http://www.w3.org/1999/xlink"> <tex Notation="TeX">${\BBZ}_{4}$</tex></formula> -linear codes. The dimension of the kernel for these <formula formulatype="inline" xmlns:mml="http://www.w3.org/1998/Math/MathML" xmlns:xlink="http://www.w3.org/1999/xlink"><tex Notation="TeX">${\BBZ}_{4}$</tex> </formula> -linear codes is established generalizing the known results about the dimension of the kernel for <formula formulatype="inline" xmlns:mml="http://www.w3.org/1998/Math/MathML" xmlns:xlink="http://www.w3.org/1999/xlink"><tex Notation="TeX">${\BBZ}_{4}$</tex> </formula> -linear Hadamard and <formula formulatype="inline" xmlns:mml="http://www.w3.org/1998/Math/MathML" xmlns:xlink="http://www.w3.org/1999/xlink"><tex Notation="TeX">${\BBZ}_{4}$</tex> </formula> -linear extended 1-perfect codes.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.