Abstract

This paper describes attitude dynamics properties of spinning, momentum-biased and zero-momentum solar sail spacecraft. The model called “Generalized Sail Dynamics Model” (GSDM) is introduced, which can deal with general and practical sail configurations, such as arbitrary optical property distribution, shape and surface wrinkles. Attitude stability criteria and other key dynamical characteristics are derived and compared by compact analytical equations induced from the GSDM. The newly derived zero-momentum sail dynamics is compared with that of spinning and momentum-biased sails. It is shown that the spinning and momentum sails have an advantage in terms of dynamical stability whereas zero-momentum sails are only statically stable. With this special property, angular momentum-stabilized sails can realize a sun-pointing stable attitude with almost zero-fuel, which are discussed with actual space flight experience of the JAXA’s two interplanetary missions, IKAROS and Hayabusa2.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.