Abstract

To address the problem that conventional neural networks trained on radar echo data cannot handle the phase of the echoes, resulting in insufficient information utilization and limited performance in detection and classification, we extend neural networks from the real-valued neural networks to the complex-valued neural networks, presenting a novel algorithm for classifying small sea surface targets. The proposed algorithm leverages an improved residual fusion network and complex time–frequency spectra. Specifically, we augment the Deep Residual Network-50 (ResNet50) with a spatial pyramid pooling (SPP) module to fuse feature maps from different receptive fields. Additionally, we enhance the feature extraction and fusion capabilities by replacing the conventional residual block layer with a multi-branch residual fusion (MBRF) module. Furthermore, we construct a complex time–frequency spectrum dataset based on radar echo data from four different types of sea surface targets. We employ a complex-valued improved residual fusion network for learning and training, ultimately yielding the result of small target classification. By incorporating both the real and imaginary parts of the echoes, the proposed complex-valued improved residual fusion network has the potential to extract more comprehensive features and enhance classification performance. Experimental results demonstrate that the proposed method achieves superior classification performance across various evaluation metrics.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.