Abstract

Slope deformation in mountainous terrain can be driven by different processes, the nature of which is either gravitational and irreversible or seasonal and reversible, the latter induced by permafrost variations or by hydromechanical or thermomechanical effects. The importance of identifying such deformations is not only related to the hazard they can pose, but also to the understanding of changes that permafrost or local hydrological conditions undergo. Here, we carry out a multi-temporal InSAR analysis over a mountainous area 8000 km2 large, straddling north-western Bhutan and southern Tibet. We propose a methodology to separate locally deforming areas from the effects of long-wavelength signals through the analysis of the spatio-temporal behaviour of 4-years long time series of surface displacements. We present the mapping of hundreds of small-scale features that appear to be actively deforming, as well as several examples of reversible deformation rarely detected at this scale in such a challenging and vast region. The analysis of the multi-annual trend of ground deformation shows a relatively small number of irreversible gravitational movements clearly related to rock slides which attests a low level of recent activity of large rock slope instabilities in the region. In the southernmost, lower elevation parts of the study area, we quantify reversible surface displacements with amplitudes ranging between 5 and 17 mm, and showing maximum displacements towards the satellite in summer months, thus compatible with hydro-mechanical effects related to groundwater table variations. In addition, the ground movement induced by the active layer's response to thawing and freezing over the gentler slopes and high-elevation permafrost regions of Bhutan and southern Tibet is on average around 10 mm, with maxima up to 28 mm. The localised displacements appear to be largely associated to braided stream plains, glacier outwash plains or low angle, fine sediment covered slopes.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.