Abstract
This paper studies classification of gene-expression trajectories coming from two classes, healthy and mutated (cancerous) using Boolean networks with perturbation (BNps) to model the dynamics of each class at the state level. Each class has its own BNp, which is partially known based on gene pathways. We employ a Gaussian model at the observation level to show the expression values of the genes given the hidden binary states at each time point. We use expectation maximization (EM) to learn the BNps and the unknown model parameters, derive closed-form updates for the parameters, and propose a learning algorithm. After learning, a plug-in Bayes classifier is used to classify unlabeled trajectories, which can have missing data. Measuring gene expressions at different times yields trajectories only when measurements come from a single cell. In multiple-cell scenarios, the expression values are averages over many cells with possibly different states. Via the central-limit theorem, we propose another model for expression data in multiple-cell scenarios. Simulations demonstrate that single-cell trajectory data can outperform multiple-cell average expression data relative to classification error, especially in high-noise situations. We also consider data generated via a mammalian cell-cycle network, both the wild-type and with a common mutation affecting p27.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
More From: IEEE/ACM transactions on computational biology and bioinformatics
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.