Abstract
We show that the support of a simple weight module over the Virasoro algebra, which has an infinite-dimensional weight space, coincides with the weight lattice and that all non-trivial weight spaces of such module are infinite-dimensional. As a corollary we obtain that every simple weight module over the Virasoro algebra, having a non-trivial finite-dimensional weight space, is a Harish-Chandra module (and hence is either a simple highest or lowest weight module or a simple module from the intermediate series). This implies positive answers to two conjectures about simple pointed and simple mixed modules over the Virasoro algebra.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.