Abstract
AbstractSeveral sound classifiers have been developed throughout the years. The accuracy provided by these classifiers is influenced by the features they use and the classification method implemented. While there are many approaches in sound feature extraction and in sound classification, most have been used to classify sounds with very different characteristics. Here, we propose a similar sound classifier that is able to distinguish sounds with very similar properties, namely sounds produced by objects with similar geometry and that only differ in material. The classifier applies independent component analysis to learn temporal and spectral features of the sounds, which are then used by a 1-nearest neighbor algorithm. We concluded that the features extracted in this way are powerful enough for classifying similar sounds. Finally, a user study shows that the classifier achieves better performance than humans in the classification of the sounds used here.Keywordssound classificationfeature extractionnatural soundsacoustic signal processingindependent component analysis
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.