Abstract
With the ever increasing social networking and online marketing sites, the reviews and blogs obtained from those, act as an important source for further analysis and improved decision making. These reviews are mostly unstructured by nature and thus, need processing like classification or clustering to provide a meaningful information for future uses. These reviews and blogs may be classified into different polarity groups such as positive, negative, and neutral in order to extract information from the input dataset. Supervised machine learning methods help to classify these reviews. In this paper, four different machine learning algorithms such as Naive Bayes (NB), Maximum Entropy (ME), Stochastic Gradient Descent (SGD), and Support Vector Machine (SVM) have been considered for classification of human sentiments. The accuracy of different methods are critically examined in order to access their performance on the basis of parameters such as precision, recall, f-measure, and accuracy.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.