Abstract

Brain–computer interface (BCI) is a developing, novel mode of communication for individuals with severe motor impairments or those who have no other options for communication aside from their brain signals. However, the majority of current BCI systems are based on visual stimuli or visual feedback, which may not be applicable for severe locked-in patients that have lost their eyesight or the ability to control their eye movements. In the present study, we investigated the feasibility of using auditory steady-state responses (ASSRs), elicited by selective attention to a specific sound source, as an electroencephalography (EEG)-based BCI paradigm. In our experiment, two pure tone burst trains with different beat frequencies (37 and 43Hz) were generated simultaneously from two speakers located at different positions (left and right). Six participants were instructed to close their eyes and concentrate their attention on either auditory stimulus according to the instructions provided randomly through the speakers during the inter-stimulus interval. EEG signals were recorded at multiple electrodes mounted over the temporal, occipital, and parietal cortices. We then extracted feature vectors by combining spectral power densities evaluated at the two beat frequencies. Our experimental results showed high classification accuracies (64.67%, 30 commands/min, information transfer rate (ITR)=1.89bits/min; 74.00%, 12commands/min, ITR=2.08bits/min; 82.00%, 6 commands/min, ITR=1.92bits/min; 84.33%, 3 commands/min, ITR=1.12bits/min; without any artifact rejection, inter-trial interval=6s), enough to be used for a binary decision. Based on the suggested paradigm, we implemented a first online ASSR-based BCI system that demonstrated the possibility of materializing a totally vision-free BCI system.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.