Abstract

Local binary pattern (LBP) is a texture descriptor that has been proven to be quite effective for various image analysis tasks in image processing. In this paper one-dimensional local binary pattern (1D-LBP) based features are used for classification of seizure and seizure-free electroencephalogram (EEG) signals. The proposed method employs a bank of Gabor filters for processing the EEG signals. The processed EEG signal is divided into smaller segments and histograms of 1D-LBPs of these segments are computed. Nearest neighbor classifier utilizes the histogram matching scores to determine whether the acquired EEG signal belongs to seizure or seizure-free category. Experimental results on publicly available database suggest that the proposed features effectively characterize local variations and are useful for classification of seizure and seizure-free EEG signals with a classification accuracy of 98.33%. This result demonstrates the superiority of our approach for classification of seizure and seizure-free EEG signals over recently proposed approaches in the literature.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.