Abstract

Dynamic properties, derived from dielectric relaxation spectra of glass-formers at variable temperature and pressure, are used to characterize and classify any resolved or unresolved secondary relaxation based on their different behaviors. The dynamic properties of the secondary relaxation used include: (1) the pressure and temperature dependences; (2) the separation between its relaxation time taubeta and the primary relaxation time taualpha at any chosen taualpha; (3) whether taubeta is approximately equal to the independent (primitive) relaxation time tau0 of the coupling model; (4) whether both taubeta and tau0 have the same pressure and temperature dependences; (5) whether it is responsible for the "excess wing" of the primary relaxation observed in some glass-formers; (6) how the excess wing changes on aging, blending with another miscible glass-former, or increasing the molecular weight of the glass-former; (7) the change of temperature dependence of its dielectric strength Deltaepsilonbeta and taubeta across the glass transition temperature Tg; (8) the changes of Deltaepsilonbeta and taubeta with aging below Tg; (9) whether it arises in a glass-former composed of totally rigid molecules without any internal degree of freedom; (10) whether only a part of the molecule is involved; and (11) whether it tends to merge with the alpha-relaxation at temperatures above Tg. After the secondary relaxations in many glass-formers have been characterized and classified, we identify the class of secondary relaxations that bears a strong connection or correlation to the primary relaxation in all the dynamic properties. Secondary relaxations found in rigid molecular glass-formers belong to this class. The secondary relaxations in this class play the important role as a precursor or local step of the primary relaxation, and we propose that only they should be called the Johari-Goldstein beta-relaxation.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.