Abstract
Lie had shown that there is a unique class of scalar second order ordinary differential equations (ODEs) that can be converted to linear form by point transformations. Mahomed and Leach had shown that for higher order (than 2) scalar ODEs there are always three classes. Separately, Chern had linearized two classes of third order ODEs by using contact transformations. We provided an (inclusive) classification for third order ODEs by using a generalization of contact transformations. Here we extend that work to the fourth order using a generalization of the Lie–Backlund transformation and demonstrate that there are (at least) four classes of fourth order linearizable ODEs.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.