Abstract

BackgroundRoot canal treatment is a debridement process which disrupts and removes entire microorganisms from the root canal system. Identification of microorganisms may help clinicians decide on treatment alternatives such as using different irrigants, intracanal medicaments and antibiotics. However, the difficulty in cultivation and the complexity in isolation of predominant anaerobic microorganisms make clinicians resort to empirical medical treatments. For this reason, identification of microorganisms is not a routinely used procedure in root canal treatment. In this study, we aimed at classifying 7 different standard microorganism strains which are frequently seen in root canal infections, using odor data collected using an electronic nose instrument.MethodOur microorganism odor data set consisted of 5 repeated samples from 7 different classes at 4 concentration levels. For each concentration, 35 samples were classified using 3 different discriminant analysis methods. In order to determine an optimal setting for using electronic-nose in such an application, we have tried 3 different approaches in evaluating sensor responses. Moreover, we have used 3 different sensor baseline values in normalizing sensor responses. Since the number of sensors is relatively large compared to sample size, we have also investigated the influence of two different dimension reduction methods on classification performance.ResultsWe have found that quadratic type dicriminant analysis outperforms other varieties of this method. We have also observed that classification performance decreases as the concentration decreases. Among different baseline values used for pre-processing the sensor responses, the model where the minimum values of sensor readings in the sample were accepted as the baseline yields better classification performance. Corresponding to this optimal choice of baseline value, we have noted that among different sensor response model and feature reduction method combinations, the difference model with standard deviation based dimension reduction or normalized fractional difference model with principal component analysis based dimension reduction results in the best overall performance across different concentrations.ConclusionOur results reveal that the electronic nose technology is a promising and convenient alternative for classifying microorganisms that cause root canal infections. With our comprehensive approach, we have also determined optimal settings to obtain higher classification performance using this technology and discriminant analysis.

Highlights

  • Endodontics is largely concerned with the treatment of infections originating in the root canal system

  • Among different baseline values used for pre-processing the sensor responses, the model where the minimum values of sensor readings in the sample were accepted as the baseline yields better classification performance

  • Our results reveal that the electronic nose technology is a promising and convenient alternative for classifying microorganisms that cause root canal infections

Read more

Summary

Introduction

Endodontics is largely concerned with the treatment of infections originating in the root canal system. More than 300 species of bacteria have been isolated from the oral cavity, only a limited number have been consistently isolated from endodontic infections [5]. These include species of the genera Streptococcus, Fusobacterium, Prevotella, Porphyromonas, Eubacterium, Peptostreptococcus, Bacteroides, and Lactobacillus [5,6]. The difficulty in cultivation and the complexity in isolation of predominant anaerobic microorganisms make clinicians resort to empirical medical treatments. For this reason, identification of microorganisms is not a routinely used procedure in root canal treatment. We aimed at classifying 7 different standard microorganism strains which are frequently seen in root canal infections, using odor data collected using an electronic nose instrument

Methods
Results
Conclusion
Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.