Abstract
Unsupervised pattern-recognition methods and Kohonen neural networks have been applied to the classification of rapeseed and soybean oil samples according to their type and quality by use of chemical and physical properties (density, refractive index, saponification value, and iodine and acid numbers) and thermal properties (thermal decomposition temperatures) as variables. A multilayer feed-forward (MLF) neural network (NN) has been used to select the most important variables for accurate classification of edible oils. To accomplish this task different neural networks architectures trained by back propagation of error method, using chemical, physical, and thermal properties as inputs, were employed. The network with the best performance and the smallest root mean squared (RMS) error was chosen. The results of MLF network sensitivity analysis enabled the identification of key properties, which were again used as variables in principal components analysis (PCA), cluster analysis (CA), and in Kohonen self-organizing feature maps (SOFM) to prove their reliability.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.