Abstract

Negative emotional regulation is a defining element of psychological disorders. Our goal was to create a machine-learning model to classify psychological disorders based on negative emotions. EEG brainwave dataset displaying positive, negative, and neutral emotions. However, negative emotions are responsible for psychological health. In this paper, research focused solely on negative emotional state characteristics for which the divide-and-conquer approach has been applied to the feature extraction process. Features are grouped into four equal subsets and feature selection has been done for each subset by feature ranking approach based on their feature importance determined by the Random Forest-Recursive Feature Elimination with Cross-validation (RF-RFECV) method. After feature ranking, the fusion of the feature subset is employed to obtain a new potential dataset. 10-fold cross-validation is performed with a grid search created using a set of predetermined model parameters that are important to achieving the greatest possible accuracy. Experimental results demonstrated that the proposed model has achieved 97.71% accuracy in predicting psychological disorders.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.