Abstract

Abstract In this article, we study the following weighted integral system: u ( x ) = ∫ R + n + 1 y n + 1 β f ( u ( y ) , v ( y ) ) ∣ x − y ∣ λ d y , x ∈ R + n + 1 , v ( x ) = ∫ R + n + 1 y n + 1 β g ( u ( y ) , v ( y ) ) ∣ x − y ∣ λ d y , x ∈ R + n + 1 . \left\{\begin{array}{l}u\left(x)=\mathop{\displaystyle \int }\limits_{{{\mathbb{R}}}_{+}^{n+1}}\frac{{y}_{n+1}^{\beta }f\left(u(y),v(y))}{{| x-y| }^{\lambda }}{\rm{d}}y,\hspace{1em}x\in {{\mathbb{R}}}_{+}^{n+1},\hspace{1.0em}\\ v\left(x)=\mathop{\displaystyle \int }\limits_{{{\mathbb{R}}}_{+}^{n+1}}\frac{{y}_{n+1}^{\beta }g\left(u(y),v(y))}{{| x-y| }^{\lambda }}{\rm{d}}y,\hspace{1em}x\in {{\mathbb{R}}}_{+}^{n+1}.\hspace{1.0em}\end{array}\right. Under nature structure conditions on f f and g g , we classify the positive solutions using the method of moving spheres.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.