Abstract

This paper proposes a novel contextual method for classification of polarimetric synthetic aperture radar data. The method combines support vector machine (SVM) and Wishart classifiers to benefit from both parametric and nonparametric methods. This method computes the energy function of a Markov random field (MRF) in the neighborhoods of the pixel using Wishart distribution. It then relates the Markovian energydifference function to the SVM classifier. Therefore, the salt-and-pepper effect on the classified map is reduced using a contextual classifier. Moreover, to achieve the full advantage of spatial information, texture features are added into the contextual classification. Texture features are extracted from SPAN images and are added to the SVM classifier. In this paper, two Radarsat-2 polarimetric images acquired in the leaf-off and leaf-on seasons are used from a forest area. Efficient multitemporal information is exploited using composite kernels in SVM. Comparison of the proposed algorithm with the Wishart, Wishart-MRF, SVM, and SVM with composite kernel classifiers shows a 21.72%, 16.17%, 11.29%, and 8.19% improvement in overall accuracy, respectively. Moreover, incorporating texture features into classification results significant increase in the average accuracy in forest species compared with the use of only polarimetric features.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.