Abstract

AbstractAn effective measurement of physical activity gives an accurate indication of physical health. This information can be highly useful, particularly in rehabilitation development and personal weight management. In this paper, time domain features are selected for different types of physical activities to produce the best classification in the feature space. We have used wavelet transform based rotation forest classifier to recognize seventeen different types of physical activities. Furthermore, to improve the time and space complexity, we have compared three types of attribute or feature selection methods. Our proposed framework has produced higher classification accuracy of 98% with only 58 features selected by correlation based feature selection (CFS) using tabu search for seventeen different physical activities.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.