Abstract
This article is devoted to the research and development of methods for classifying pathologies on digital chest radiographs using two different machine learning approaches: the eXtreme gradient boosting (XGBoost) algorithm and the deep convolutional neural network residual network (ResNet50). The goal of the study is to develop effective and accurate methods for automatically classifying various pathologies detected on chest X-rays. The study collected an extensive dataset of digital chest radiographs, including a variety of clinical cases and different classes of pathology. Developed and trained machine learning models based on the XGBoost algorithm and the ResNet50 convolutional neural network using pre-processed images. The performance and accuracy of both models were assessed on test data using quality metrics and a comparative analysis of the results was carried out. The expected results of the article are high accuracy and reliability of methods for classifying pathologies on chest radiographs, as well as an understanding of their effectiveness in the context of clinical practice. These results may have significant implications for improving the diagnosis and care of patients with chest diseases, as well as promoting the development of automated decision support systems in radiology.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
More From: International Journal of Electrical and Computer Engineering (IJECE)
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.