Abstract
In this paper we investigate the application of feature extraction and machine learning techniques to fault identification in power systems. Specifically we implement the novel application of Permutation Entropy-based measures known as Weighted Permutation and Dispersion Entropy to field Electro-Magnetic Interference (EMI) signals for classification of discharge sources, also called conditions, such as partial discharge, arcing and corona which arise from various assets of different power sites. This work introduces two main contributions: the application of entropy measures in condition monitoring and the classification of real field EMI captured signals. The two simple and low dimension features are fed to a Multi-Class Support Vector Machine for the classification of different discharge sources contained in the EMI signals. Classification was performed to distinguish between the conditions observed within each site and between all sites. Results demonstrate that the proposed approach separated and identified the discharge sources successfully.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.