Abstract

To investigate the value of combining amplitude of low-frequency fluctuations-based radiomics and the support vector machine classifier method in distinguishing patients with Parkinson's disease from healthy controls. A total of 123 patients with Parkinson's disease and 90 healthy controls from three centers with functional and structural MRI images were included in this study. We extracted radiomics features using the Brainnetome 246 atlas from the mean amplitude of low-frequency fluctuations maps. Two-sample t-tests and recursive feature elimination combined with support vector machine method were applied for feature selection and dimensionality reduction. We used support vector machine classifier to construct model and identify the discriminative features. The automated anatomical labeling 90 atlas and fivefold cross-validation were used to evaluate the robustness and generalization of the classifier. We found our model obtained a high classification performance with an accuracy of 78.07%, and AUC, sensitivity, and specificity of 0.8597, 78.80%, and 76.08%, respectively. We detected 7 discriminative brain subregions. The fivefold cross-validation and automated anatomical labeling 90 atlas also got high classification accuracy, and we found Brainnetome 246 atlas achieved a higher classification performance than the automated anatomical labeling 90 atlas both with tenfold and fivefold cross-validation. Our findings may help the early diagnosis of Parkinson's disease and provide support for research on Parkinson's disease mechanisms and clinical evaluation.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.