Abstract

Poincaré plots, also called Poincaré maps, are used by plasma physicists to understand the behavior of magnetically confined plasma in numerical simulations of a tokamak. These plots are created by the intersection of field lines with a two-dimensional poloidal plane that is perpendicular to the axis of the torus representing the tokamak. A plot is composed of multiple orbits, each created by a different field line as it goes around the torus. Each orbit can have one of four distinct shapes, or classes, that indicate changes in the topology of the magnetic fields confining the plasma. Given the (x, y) coordinates of the points that form an orbit, we want to assign a class to the orbit, a task that appears ideally suited for a machine learning approach. In this paper, we describe how we overcame two major challenges in solving this problem—creating a high-quality training set, with few mislabeled orbits, and converting the coordinates of the points into features that are discriminating, despite the variation within the orbits of a class and the apparent similarities between orbits of different classes. Our automated approach is not only more objective and accurate than visual classification, but is also less tedious, making it easier for plasma physicists to analyze the topology of magnetic fields from numerical simulations of the tokamak.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.