Abstract

The interaction of rotating machine elements with fluid in gearboxes results in fluid flow and no-load power loss. A targeted design of the gearbox lubrication system enables a reliable operation under economical and sustainable use of lubricant. This study focuses on the influence of various parameters on the oil flow and no-load gear power loss of a dip-lubricated single-stage gearbox. Numerical, experimental, and analytical results are presented and compared. A single numerical simulation setup without parameter-specific tuning is applied for a wide range of parameters. The evaluated wetted gear surface strongly depends on the circumferential speed and shows a strong correlation with the resulting no-load gear loss torque. At lower circumferential speed, the wetted gear surface decreases before increasing at higher circumferential speed. Numerical and experimental results show good agreement in terms of magnitude and trend. The analytical approaches underestimate the numerical and experimental results. Nevertheless, they do provide a good representation of the trends in terms of the influence of immersion depth and rotation direction.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.