Abstract
The stethoscope is a commonly used medical device for diagnosing a patient’s condition by listening to their heartbeat. This diagnostic technique is known as auscultation, where each heart sound heard through the stethoscope has a distinct pattern that depends on the person’s heart condition. Researchers have developed computational methods that automatically analyze heart sounds to overcome the subjective nature of auscultation. In this study, we utilized the Hjorth method for feature extraction and the Long Short-Term RNN algorithm for classifying the normal and abnormal heart sounds. With 100 epochs, two layers of LSTM-RNN, and one layer of Dense, the classification accuracy for distinguishing normal and abnormal sounds reached 71.95%. This research aims to contribute to the development of an accurate system for detecting normal and abnormal heart sounds.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.