Abstract
A complete classification of non-affine dynamical quantum $R$-matrices obeying the ${\mathcal G}l_n({\mathbb C})$-Gervais-Neveu-Felder equation is obtained without assuming either Hecke or weak Hecke conditions. More general dynamical dependences are observed. It is shown that any solution is built upon elementary blocks, which individually satisfy the weak Hecke condition. Each solution is in particular characterized by an arbitrary partition ${{\mathbb I}(i), i\in{1,...,n}}$ of the set of indices ${1,...,n}$ into classes, ${\mathbb I}(i)$ being the class of the index $i$, and an arbitrary family of signs $(\epsilon_{\mathbb I})_{{\mathbb I}\in{{\mathbb I}(i), i\in{1,...,n}}}$ on this partition. The weak Hecke-type $R$-matrices exhibit the analytical behaviour $R_{ij,ji}=f(\epsilon_{{\mathbb I}(i)}\Lambda_{{\mathbb I}(i)}-\epsilon_{{\mathbb I}(j)}\Lambda_{{\mathbb I}(j)})$, where $f$ is a particular trigonometric or rational function, $\Lambda_{{\mathbb I}(i)}=\sum\limits_{j\in{\mathbb I}(i)}\lambda_j$, and $(\lambda_i)_{i\in{1,...,n}}$ denotes the family of dynamical coordinates.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
More From: Symmetry, Integrability and Geometry: Methods and Applications
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.