Abstract
Understanding neural functions requires the observation of the activities of single neurons that are represented via electrophysiological data. Processing and understanding these data are challenging problems in biomedical engineering. A microelectrode commonly records the activity of multiple neurons. Spike sorting is a process of classifying every single action potential (spike) to a particular neuron. This paper proposes a combination between diffusion maps (DM) and mean shift clustering method for spike sorting. DM is utilized to extract spike features, which are highly capable of discriminating different spike shapes. Mean shift clustering provides an automatic unsupervised clustering, which takes extracted features from DM as inputs. Experimental results show a noticeable dominance of the features extracted by DM compared to those selected by wavelet transformation (WT). Accordingly, the proposed integrated method is significantly superior to the popular existing combination of WT and superparamagnetic clustering regarding spike sorting accuracy.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.