Abstract
In this study, we aimed to develop a recurrent neural network (RNN) with a long short-time memory (LSTM) model to monitor and classify cattle behavior patterns using inertial measurement units (IMU). This model was trained using motion data obtained from 6 Japanese steers. Each steer was fitted with an IMU sensor inside a waterproof box attached to a collar on the neck. Classified behavior classes included feeding, lying, ruminating (while lying), ruminating (while standing), licking salt, moving, social licking and head butt. LSTM-RNN model was trained to classify and measure cattle’s behavior across three window-sizes including window-size 64, 128 and 256 (3.2 s, 6.4 s and 12.8 s). A convolution neural network (CNN) model was used for comparison. The results reveal the LSTM-RNN model classification performance was superior to the CNN model. The LSTM-RNN model was found to achieve the best performance when using a window-size of 64 (accuracy, precision, recall, f1-score all were 88.7%). With a window-size 64, classification accuracy of specific behaviors was 97.8% (feeding), 88.7% (lying), 88.4% (ruminating-lying), 92.9% (ruminating-standing), 94.4% (licking salt), 84.8% (moving), 80.3% (social licking), and 81.9% (head butt). A few physically similar behaviors were easily misclassified. In conclusion, the LSTM-RNN demonstrated reasonable classification of cattle behavior. In future, additional sensors, such as a microphone, could be added to the cattle behavior monitoring system and behavior classification extended to cattle welfare and growth behaviors, such as feeding, reproduction and disease prediction.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.