Abstract

In this paper, a parallel hidden-Markov-model (PHMM)-based approach is proposed for the problem of multichannel electroencephalogram (EEG) patterns classification. The approach is based on multi-channel representation of the EEG signals using a parallel combination of HMMs, where each model represents a particular channel. The performance of the proposed algorithm is studied using an artificial EEG database, and two real EEG databases: a database of two classes of EEGs elicited during a task of imagery of hand upward and downward movements of a computer screen cursor (db Ia), and a database of two classes of sensorimotor EEGs elicited during a feedback-regulated left-right motor imagery task (db III). The results show that the proposed algorithm outperforms other commonly used methods with classification rate improvement of 2 and 10% for db Ia and db III, respectively. In addition, the proposed method outperforms a support vector machine classifier with a linear kernel, when both classifiers utilize the same feature set. The results also show that a model architecture which includes a left-to-right scheme with no skips, five states and three Gaussians, outperforms the other tested architectures due to the fact that it allows a better modeling of the temporal sequencing of the EEG components.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.