Abstract

We proposed some novel classification features for the microcalcification of mammograms, and selected the effective combined features using Karhunen–Loeve (KL) transformation followed by the restricted Euclidean distance measure, and finally applied the proposed trend-oriented radial basis function neural network (TRBF-NN) to distinguish the benign group from the malignant group and evaluate the performance with the round-robin method. The two-dimensional KL features were more distinguishable than the raw two-dimensional features. The TRBF-NN was able to define the more generalized distribution than those distributions defined by the conventional RBF-NNs. According to the receiver operating characteristic analysis, the proposed system performed better than two trained radiologists.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.