Abstract
A surface in the Lorentzian complex plane ${\bf C}^2_1$ is called {\it marginally trapped\/} if its mean curvature vector is light-like at each point on the surface. In this article, we classify marginally trapped surfaces of constant curvature in the Lorentzian complex plane ${\bf C}^2_1$. Our main results state that there exist twenty-one families of marginally trapped surfaces of constant curvature in ${\bf C}^2_1$. Conversely, up to rigid motions and dilations, marginally trapped surfaces of constant curvature in ${\bf C}^2_1$ are locally obtained from these twenty-one families.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.